RoHS Test Report

No. 201205829R
Date: Jun. 07, 2012
Page 1 of 10

• APPLICANT: SMART-GROUP (DONGGUAN SHIMA ELECTRONICS CO., LTD)
 No.135, Huancheng Road, Mawu Village, Qiaoli Management
 Community, Changping Town, Dongguan city, Guangdong
 Province, China.

REPORT ON THE SUBMITTED SAMPLE SAID TO BE

<table>
<thead>
<tr>
<th>SAMPLE NAME</th>
<th>Climate control</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE /MODEL</td>
<td>SB-9in1-CL, SB-IR-UN, SB-HVAC2-DN, SB-6FAN5S-DN,</td>
</tr>
<tr>
<td></td>
<td>SB-THP-WL, SB-6in1-CL, SB-5in1-CL, SB-4T-UN, SB-Pump-DN,</td>
</tr>
<tr>
<td></td>
<td>CSS-C3-WL, CSS-D2-WL, SB-GENSet-UN, SB-3PhaseP-DN,</td>
</tr>
<tr>
<td></td>
<td>SB-PIR-CL, MAK-MEST-UN, SB-4in1-CL, CSS-V2-WL,</td>
</tr>
<tr>
<td></td>
<td>CSS-H1-WL, SB-Temp1-UN, MAK-Box-UN, OE-PIR8-WL,</td>
</tr>
<tr>
<td></td>
<td>OE-PIR6-WL, OE-OPIR11-WL</td>
</tr>
</tbody>
</table>

MANUFACTURER: SMART-GROUP (DONGGUAN SHIMA ELECTRONICS CO., LTD)

TEST REPORT NUMBER: 201205829R

SAMPLE RECEIVED DATE: May 29, 2012

TESTING PERIOD: May 29, 2012 to Jun. 07, 2012

TEST REQUESTED: TO COMBINE THE TEST RESULT FOR THE SUBMITTED SAMPLE

CONCLUSION:

<table>
<thead>
<tr>
<th>TESTED SAMPLES</th>
<th>STANDARD</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBMITTED SAMPLE</td>
<td>EUROPEAN DIRECTIVE 2011/65/EU</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>ON THE RESTRICTION OF THE USE OF CERTAIN HAZARDOUS SUBSTANCES (RoHS Directive)</td>
<td></td>
</tr>
</tbody>
</table>

*******FOR FURTHER DETAILS, PLEASE REFER TO THE FOLLOWING PAGE(S)************

Signed for and on behalf of ANBOTEK COMPLIANCE LABORATORY LIMITED

Written by [Signature]

Inspected by [Signature]

Approved [Signature]

Jeff Zhu / Manager
Testing method:

<table>
<thead>
<tr>
<th>Testing Item</th>
<th>Measuring method</th>
<th>Instrument</th>
<th>Report Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd)</td>
<td>EN 1122B</td>
<td>ICP-AES</td>
<td>2 mg/kg</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>EPA 3050B</td>
<td>ICP-AES</td>
<td>2 mg/kg</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>EPA 3052</td>
<td>ICP-AES</td>
<td>2 mg/kg</td>
</tr>
<tr>
<td>Chromium(VI) [Cr(VI)]</td>
<td>EPA 3060A</td>
<td>UV-VIS</td>
<td>2 mg/kg</td>
</tr>
<tr>
<td>Polybrominated Biphenyl (PBB)</td>
<td>83/264/EEC</td>
<td>GC/MS</td>
<td>5 mg/kg</td>
</tr>
<tr>
<td>Polybrominated Diphenylether (PBDE)</td>
<td>83/264/EEC</td>
<td>GC/MS</td>
<td>5 mg/kg</td>
</tr>
</tbody>
</table>

Method detection Limits:

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Unit</th>
<th>Acceptable Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>100</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>ppm</td>
<td>1000</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>ppm</td>
<td>1000</td>
</tr>
<tr>
<td>Chromium(VI) [Cr(VI)]</td>
<td>ppm</td>
<td>1000</td>
</tr>
<tr>
<td>Polybrominated Biphenyl (PBB)</td>
<td>ppm</td>
<td>1000</td>
</tr>
<tr>
<td>Polybrominated Diphenylether (PBDE)</td>
<td>ppm</td>
<td>1000</td>
</tr>
</tbody>
</table>

Test flow:

1. **To Determine lead Content:**
 - Weigh the sample into a vessel.
 - Add the digestion solution, close the microwave vessel.
 - The sample is digested in the microwave oven following a specific decomposition program.
 - Cooling the vessel, filter; washed and filled to the mark with distilled water.
 - Tested by ICP-OE
 - Report

2. **To Determine Cadmium Content:**
 - Weigh the sample into a flask.
 - Added the acid digestion solution and heated until the decomposed solution turns pale yellow.
 - Cool down, Hydrogen peroxide is added. The sample is heated once again until white fumes are generated.
 - Filter; washed and filled to the mark with distilled water.
 - Tested by ICP-OE
 - Report
3. To Determine Mercury Content:

Weigh the sample into a vessel. → Add the digestion solution, close the microwave vessel → The sample is digested in the microwave oven following a specific decomposition program → Cooling the vessel, filter; washed and filled to the mark with distilled water → Tested by CV-AAS.

4. To Determine Hexavalent Chromium Content:

Weigh the sample; add the digestion solution. → Stir while heating the samples continuously to 90-95°C → Gradually cool each solution to room temperature → Filter; washed and filled to the mark with distilled water → Transfer a portion of the solution to absorption cell, measure the absorbance with UV-VIS. → Add the diphenylcarbazide solution and adjust the pH to acidic.

5. To Determine Hexavalent Chromium Content in metals: spot-test:

For a metal plate sample, place 1-5 drops of test solution on the sample → If the test result is positive for the sample, the sample is considered to have a hexavalent chromium coating → If the test result is negative, some testing steps are carried out to confirm that the result is negative or positive.

When ever the analyst is not certain about the spot-test result obtained, the boiling-water-extraction procedure shall be used to verify the result.

6. To Determine PBBs / PBDEs Content:

Add 100mg +/- 10mg of the sample into the extraction thimbles. → Add appropriate surrogate and, matrix spiking standards. → Add extraction to flask; extract for appropriate hours. → Collect extract, filled to the mark with solvent. → Tested by GC-MS.
Test Results

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3-1</th>
<th>No. 3-2</th>
<th>No. 4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td></td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Flame Retardants

<table>
<thead>
<tr>
<th></th>
<th>ppm</th>
<th>5</th>
<th>N.D.</th>
<th>N.A.</th>
<th>N.D.</th>
<th>N.A.</th>
<th>N.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polybrominated biphenyls (PBBs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybrominated Diphenylethers(PBDEs)</td>
<td>ppm</td>
<td>5</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 4-2</th>
<th>No. 5-1</th>
<th>No. 5-2</th>
<th>No. 6-1</th>
<th>No. 6-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Flame Retardants

<table>
<thead>
<tr>
<th></th>
<th>ppm</th>
<th>5</th>
<th>N.A.</th>
<th>N.D.</th>
<th>N.A.</th>
<th>N.D.</th>
<th>N.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polybrominated biphenyls (PBBs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybrominated Diphenylethers(PBDEs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 7-1</th>
<th>No. 7-2</th>
<th>No. 7-3</th>
<th>No. 7-4</th>
<th>No. 7-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Flame Retardants

<table>
<thead>
<tr>
<th></th>
<th>ppm</th>
<th>5</th>
<th>N.A.</th>
<th>N.A.</th>
<th>N.A.</th>
<th>N.D.</th>
<th>N.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polybrominated biphenyls (PBBs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybrominated Diphenylethers(PBDEs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>
RoHS Test Report

No. 201205829R
Date: Jun. 07, 2012
Page 5 of 10

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 7-6</th>
<th>No. 7-7</th>
<th>No. 7-8</th>
<th>No. 8-1</th>
<th>No. 8-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Flame Retardants

| Polybrominated biphenyls (PBBs) | ppm | 5 | N.D. | N.D. | N.D. | N.D. | N.A. |
| Polybrominated Diphenylethers (PBDEs) | ppm | 5 | N.D. | N.D. | N.D. | N.D. | N.A. |

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 9-1</th>
<th>No. 9-2</th>
<th>No. 9-3</th>
<th>No. 10-1</th>
<th>No. 10-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Flame Retardants

| Polybrominated biphenyls (PBBs) | ppm | 5 | N.D. | N.A. | N.D. | N.D. | N.A. |
| Polybrominated Diphenylethers (PBDEs) | ppm | 5 | N.D. | N.A. | N.D. | N.D. | N.A. |

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 10-3</th>
<th>No. 11-1</th>
<th>No. 11-2</th>
<th>No. 11-3</th>
<th>No. 11-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>Negative</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Flame Retardants

<p>| Polybrominated biphenyls (PBBs) | ppm | 5 | N.A. | N.A. | N.D. | N.A. | N.D. |
| Polybrominated Diphenylethers (PBDEs) | ppm | 5 | N.A. | N.A. | N.D. | N.A. | N.D. |</p>
<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 11-5</th>
<th>No. 11-6</th>
<th>No. 12-1</th>
<th>No. 12-2</th>
<th>No. 12-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content(Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
</tr>
<tr>
<td>Flame Retardants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybrominated biphenyis (PBBs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Polybrominated Diphenylethers(PBDEs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 13-1</th>
<th>No. 13-2</th>
<th>No. 14-1</th>
<th>No. 14-2</th>
<th>No. 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content(Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>Negative</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Flame Retardants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybrominated biphenyis (PBBs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Polybrominated Diphenylethers(PBDEs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 16</th>
<th>No. 17</th>
<th>No. 18</th>
<th>No. 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content(Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>Negative</td>
<td>Negative</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Flame Retardants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybrominated biphenyis (PBBs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Polybrominated Diphenylethers(PBDEs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>
NOTE: (1) ppm=mg/kg.
(2) N.D. = NOT DETECTED (<MDL)
(3) N.A. = NOT APPLICABLE
(4) Negative = Absence of CrVI coating

DISCLAIM: Anbotek take no responsibility for any mistakes caused by inaccurate and/or invalid information submitted by the applicant.
Sample Appearance Description:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Part Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCB</td>
<td>Green PCB (mixed)</td>
</tr>
<tr>
<td>2</td>
<td>TIN</td>
<td>Silvery metal</td>
</tr>
<tr>
<td>3</td>
<td>IC</td>
<td>---</td>
</tr>
<tr>
<td>3-1</td>
<td>BODY</td>
<td>Black body</td>
</tr>
<tr>
<td>3-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>4</td>
<td>RESISTOR</td>
<td>---</td>
</tr>
<tr>
<td>4-1</td>
<td>BODY</td>
<td>Grey body w/ multicolor printing (mixed)</td>
</tr>
<tr>
<td>4-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>5</td>
<td>CHIP RESISTOR</td>
<td>---</td>
</tr>
<tr>
<td>5-1</td>
<td>BODY</td>
<td>Black body w/ white printing</td>
</tr>
<tr>
<td>5-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>6</td>
<td>CHIP CAPACITOR</td>
<td>---</td>
</tr>
<tr>
<td>6-1</td>
<td>BODY</td>
<td>Yellow body</td>
</tr>
<tr>
<td>6-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>7</td>
<td>ELECTROLYTICAL CAPACITOR</td>
<td>---</td>
</tr>
<tr>
<td>7-1</td>
<td>FOIL</td>
<td>Black metal</td>
</tr>
<tr>
<td>7-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>7-3</td>
<td>ALUMINIUM</td>
<td>Silvery metal shell</td>
</tr>
<tr>
<td>7-4</td>
<td>LIQUID</td>
<td>Flaxen liquid</td>
</tr>
<tr>
<td>7-5</td>
<td>PAPER</td>
<td>Black paper</td>
</tr>
<tr>
<td>7-6</td>
<td>RUBBER</td>
<td>Black rubber</td>
</tr>
<tr>
<td>7-7</td>
<td>HEAT SHRINKABLE TUBINGS</td>
<td>Black plastic tube</td>
</tr>
<tr>
<td>7-8</td>
<td>SHELL</td>
<td>Black plastic</td>
</tr>
<tr>
<td>8</td>
<td>DIODE</td>
<td>---</td>
</tr>
<tr>
<td>8-1</td>
<td>BODY</td>
<td>Black solid w/ grey printing (mixed)</td>
</tr>
<tr>
<td>8-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>9</td>
<td>INDUCTOR</td>
<td>---</td>
</tr>
<tr>
<td>9-1</td>
<td>COVER</td>
<td>Black rubber cover</td>
</tr>
<tr>
<td>9-2</td>
<td>CORE</td>
<td>Dk-grey core</td>
</tr>
<tr>
<td>9-3</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>10</td>
<td>TERMINAL</td>
<td>---</td>
</tr>
<tr>
<td>10-1</td>
<td>BODY</td>
<td>Green plastic body</td>
</tr>
<tr>
<td>10-2</td>
<td>WIRE</td>
<td>Silvery metal wire</td>
</tr>
<tr>
<td>Item No.</td>
<td>Part Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>10-3</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>11</td>
<td>TRANSFORMER</td>
<td>---</td>
</tr>
<tr>
<td>11-1</td>
<td>METAL WIRE</td>
<td>Silvery color metal</td>
</tr>
<tr>
<td>11-2</td>
<td>CORE</td>
<td>Black core</td>
</tr>
<tr>
<td>11-3</td>
<td>TIN BAR</td>
<td>Silvery metal</td>
</tr>
<tr>
<td>11-4</td>
<td>INSULATION PAINT</td>
<td>Yellow plastic jacket & golden colored metal wire</td>
</tr>
<tr>
<td>11-5</td>
<td>INSULATION WIRE</td>
<td>Black skeleton</td>
</tr>
<tr>
<td>12</td>
<td>RELAY</td>
<td>---</td>
</tr>
<tr>
<td>12-1</td>
<td>BODY</td>
<td>Black body</td>
</tr>
<tr>
<td>12-2</td>
<td>METAL</td>
<td>Silvery metal</td>
</tr>
<tr>
<td>12-3</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>13</td>
<td>CRYSTAL</td>
<td>---</td>
</tr>
<tr>
<td>13-1</td>
<td>BODY</td>
<td>Silvery metal body</td>
</tr>
<tr>
<td>13-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>14</td>
<td>CAPACITOR</td>
<td>---</td>
</tr>
<tr>
<td>14-1</td>
<td>BODY</td>
<td>Blue body w/ black printing</td>
</tr>
<tr>
<td>14-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>15</td>
<td>NEEDLE</td>
<td>Silvery bend metal</td>
</tr>
<tr>
<td>16</td>
<td>COPPER MAST</td>
<td>Copper-color metal</td>
</tr>
<tr>
<td>17</td>
<td>SCREW</td>
<td>Silvery metal</td>
</tr>
<tr>
<td>18</td>
<td>CRUST</td>
<td>White plastic</td>
</tr>
<tr>
<td>19</td>
<td>LABEL</td>
<td>White label</td>
</tr>
</tbody>
</table>

***** End of Report *****
APPENDIX A

Photograph of Sample
中国合格评定国家认可委员会
实验室认可证书
（注册号：CNAS L3503）

兹证明：

深圳市安博技术服务有限公司
广东省深圳市南山区港湾大道东内环路南能源工业小区一栋一楼，518054

符合 ISO/IEC 17025：2005《检测和校准实验室能力的通用要求》
（CNAS-CL01《检测和校准实验室能力认可准则》）的要求，具备承担
本证书附件所列检测服务的能力，予以认可。

获认可的能力范围见标有相同认可注册号的证书附件，证书附件是
本证书组成部分。

签发日期：2011-06-24
有效期至：2014-06-23
初次认可：2008-05-19
更新日期：2011-06-24

中国合格评定国家认可委员会授权人

中国合格评定国家认可委员会（CNAS）经国家认证认可监督管理委员会（CNCA）授权，负责实
施合格评定国家认可制度。CNAS 是国际实验室认可合作组织（ILAC）和亚太实验室认可合作组
织（APLAC）的多边互认协议成员。
China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(Registration No. CNAS L3503)

Shenzhen Anbotek Compliance Laboratory Limited

1/F., Building 1, SEC Industrial Park, South of Neihuan Road &
East of Gangwan Road, Nanshan District, Shenzhen, Guangdong, China

The scope of accreditation is detailed in the attached appendices bearing the same registration number as above. The appendices form an integral part of this certificate.

Date of Issue: 2011-06-24
Date of Expiry: 2014-06-23
Date of Initial Accreditation: 2008-05-19
Date of Update: 2011-06-24

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment (CNAS) is authorized by Certification and Accreditation Administration of the People’s Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (ILAC MRA) and Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA).
Anbotek Compliance Laboratory Limited
1/F, 1/Build, SEC Industrial Park,,
No. 4 Qianhai Road, Nanshan District,,
Shenzhen, 518054
China

Attention: Daniel zhu

Re: Measurement facility located at Nanshan District, Shenzhen, China
Anechoic chamber (3 meter)
Date of Listing: August 20, 2010

Dear Sir or Madam:

Your request for registration of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC rules. The information has, therefore, been placed on file and the name of your organization added to the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years. Please also note that this registration does not recognize the measurement facility to perform testing for products authorized under the Declaration of Conformity (DoC) process. In order to test products subject to DoC authorization process, a measurement facility must be accredited and recognized by the FCC.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Katie Hawkins
Electronics Engineer
August 30, 2010

Anbotek Compliance Laboratory Limited
1/F, 1 /Building, SEC Industrial Park
No. 4 Qianhai Road, Nanshan District, 518054
Shenzhen, China

Attention: Daniel Zhu

Dear Sir/Madame:

The Bureau has received your application for the renewal of a 3m alternative test site. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (8058A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: 8058A

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

If you have any questions, you may contact the Bureau by e-mail at certification.bureau@ic.gc.ca. Please reference our file and submission number above for all correspondence.

Yours sincerely,

Dalwinder Gill
For: Wireless Laboratory Manager
Certification and Engineering Bureau
3701 Carling Ave., Building 94
P.O. Box 11490, Station “H”
Ottawa, Ontario K2H 8S2
Email: dalwinder.gill@ic.gc.ca
Tel. No. (613) 998-8363
Fax. No. (613) 990-4752
This is to confirm that

Anbotek Compliance Laboratory Limited
1/F, 1/Building, SEC Industrial Park, Qianhai Road, Nanshan District, Shenzhen 518054, Guangdong, P.R. China has been accepted by

TÜV SÜD China Shenzhen Branch – 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001, Fuqiang Road, Futian District, 518048, Shenzhen, P. R. China for cooperating in on-site witness projects according to the standards in attachment

This document states that the above named company is included in the TÜV SÜD PRODUCT SERVICE GROUP (TÜV SÜD) Listing of Recognized Laboratories and is qualified in compliance with the TÜV SÜD External Test Laboratory (ETL) program for the mutually agreed product categories and/or standards.

As far as the testing facilities meet the relevant requirements of this program and the tests of the projects are conducted under the supervision and witness of the engineer(s) of TÜV SÜD China Shenzhen Branch, the test results can be used as a basis for a TÜV SÜD certification.

Attestation No.: SCN1027
Expiration Date: 2012-06-07

TÜV SÜD China – South Region

Robert Osendarf
General Manager

Date of Issuance: 2011-06-07

*TÜV SÜD makes no representations or warranties expressed or implied. Issuing any form of this document will note be subject to defects or inaccuracies. In the event of any conflict or inconsistency in the information contained herein, TÜV SÜD reserves the right to modify or correct any such information without prior notice.

TÜV SÜD makes no representations or warranties, expressed or implied, regarding the accuracy or completeness of this document. TÜV SÜD is not responsible for any loss or damage caused by the use of this document. This document is not intended to be a substitute for professional advice in any respect.
California Appliance Efficiency Program

2012 Consumer Electronics Test Laboratory Application

This is a PDF fillable form. You may complete it online or print it out and complete it off line. After it has been signed, you may scan and return it as an e-mail attachment to appliances@energy.state.ca.us, or return it via mail to:

Appliance Efficiency Program
2012 Consumer Electronics Lab App: <Company Name>
California Energy Commission
1516 Ninth Street, MS-25
Sacramento, CA 95814-5512

PLEASE ALSO NOTE THAT:

- Applications that have been re-typed in your own format WILL NOT be accepted.
- It is not necessary to submit both an email and a mailed application
- This application must specify the physical address of the location that will be conducting testing.
- Please allow at least four weeks before contacting us regarding your application.

<table>
<thead>
<tr>
<th>Contact Person Name</th>
<th>Phone 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Zhu</td>
<td>86-755-26014771</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company / Laboratory Name</th>
<th>Phone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anbotek Compliance Laboratory Ltd.</td>
<td>86-755-26066365</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/F,1/build, SEC Industrial Park, Qianhai Road,</td>
<td>86-755-26014772</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Address)</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanShan District, Shenzhen, China 518054</td>
<td>daniel.zhu@anbotek.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appliance Type(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact Audio Device</td>
</tr>
<tr>
<td>DVD Player/Recorder</td>
</tr>
<tr>
<td>Television</td>
</tr>
<tr>
<td>External Power Supply</td>
</tr>
<tr>
<td>Small Battery Charger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test method(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Electrotechnical Commission (IEC) 62087:2002(E)</td>
</tr>
<tr>
<td>Electrotechnical Commission (IEC) 62301:2005 and 62087:2008(E), as directed in Section 1604(v) of the Title 20 Appliance Efficiency Regulations</td>
</tr>
<tr>
<td>10 CFR 430.23(aa) - Appendix Y to Subpart B of Part 430, Uniform Test Method for Measuring the Energy Consumption of Battery Chargers</td>
</tr>
</tbody>
</table>
Anbotek Compliance Laboratory Ltd. states:

Name of Laboratory

[Initial all appropriate paragraphs]

Y It has conducted tests using the applicable test method specified above within the previous 12 months;

Y It agrees to and does interpret and apply the applicable test method set forth in Section 1604 precisely as written;

Y It has, and keeps properly calibrated and maintained, all equipment, material, and facilities necessary to apply the applicable test method precisely as written;

Y It agrees to and does maintain copies of all test reports, and provides any such report to the Executive Director on request, for all basic models that are still in commercial production;

Y It agrees to and does allow the Executive Director to witness any test of such an appliance on request, up to once per calendar year for each basic model; and

Y It agrees to, and will follow, all applicable provisions of the California Energy Commission's Appliance Regulations (Section 1601 - 1608 of Title 20 of the California Code of Regulations), in carrying out all testing pursuant to this application.

I declare under penalty of perjury of the laws of the State of California, that:

All the information in this statement is true, complete, accurate, and in compliance with all applicable provisions of Sections 1601 - 1608 of Title 20 of the California Code of Regulations; and

I am authorized to make this declaration, and to file this application, on behalf of Anbotek Compliance Laboratory Ltd.

Name of Laboratory

Signature: __________________________ Date: NOV 21 2011

Typed Name and Title: Daniel Zhu, General Manager

The laboratory identified above is hereby approved for testing in compliance with the requirements of the Appliance Efficiency Regulations from the date shown until December 31, 2012.

Date PETER STRAIT, Program Lead Appliance Efficiency Compliance Program for the Executive Director
CERTIFICATE OF PARTICIPATION

Issued by
UL CCIC on behalf of
UL

ANBOTEK COMPLIANCE LABORATORY LTD
1F 1 BLDG, SEC INDUSTRIAL PARK, QIANHAI RD NANSHAN DIST,
SHENZHEN GUANGDONG 518054, CHINA

has been assessed and found eligible to participate in
UL WITNESS TEST DATA PROGRAM

Kenny Poon
Operations Manager
UL CCIC

Subscriber Number: 100224-608
Issued: March 13, 2012
Expires: March 12, 2013
Certificate of Qualification

for testing according to

FCC / IC / R&TTE (CE) Regulations

Issued to:

Company Name: Anbotek Compliance Laboratory Limited
Address: 1/F, 1/Build, SEC Industrial Park
No. 4 Qianhai Road, Nanshan District
City: Shenzhen, 518054
Country: China

Teleconformity of The Netherlands, who performs assessments for Notified Body for Europe (0700), CAB for Canada IC, TCB for FCC approvals, has assessed many applications from Anbotek Compliance Laboratory Limited for Compliance with the USA FCC, CANADA IC, EUROPE R&TTE CE Rules and Regulations.

We are impressed with the quality and knowledge shown, therefore we judge that Anbotek Compliance Laboratory Limited is competent to perform and Document the relevant Tests. Particularly, for each filing Teleconformity was confident that the Equipment meets the relevant Requirements before the Authorization or Opinion was issued.

Anbotek Compliance Laboratory Limited is Qualified by the FCC as 2.948 Listed Test Firm (Site Registration Number: 752021) and by Industry Canada (O.A.T.S. Registration Number: 8058A-1) for a scope of testing covered and relevant to the application for certification sought.

Expiry date: 2012-08-30
Agency attestation: TELECONFORMITY
Mr. M. Koop
Position: General Manager