RoHS Test Report

No. 201205833R Date: Jun. 07, 2012 Page 1 of 10

• APPLICANT: SMART-GROUP (DONGGUAN SHIMA ELECTRONICS CO., LTD)
 No.135, Huancheng Road, Mawu Village, Qiaoli Management Community, Changping Town, Dongguan city, Guangdong Province, China.

REPORT ON THE SUBMITTED SAMPLE SAID TO BE

SAMPLE NAME: Lighting&Dimming Controls
TYPE /MODEL: SB-DIM2c6A-DN, SB-DIM4c3A-DN, SB-DIM6c2A-DN,
 SB-DIM8c1A-DN, SB-DIM1c10A-DN, SB-ZMIX20-DN,
 SB-CC25x1-WL, SB-6BO-10V-DN, SB-ZMIX23-DN,
 SB-ZMIX24-DN, SB-2Flicker-UN, SB-3LED650-DMX,
 SB-4LED-AC24, SB-4LED-DCV
MANUFACTURER: SMART-GROUP (DONGGUAN SHIMA ELECTRONICS CO., LTD)
TEST REPORT NUMBER: 201205833R
SAMPLE RECEIVED DATE: May 29, 2012
TESTING PERIOD: May 29, 2012 to Jun. 07, 2012

**
TEST REQUESTED: TO COMBINE THE TEST RESULT FOR THE SUBMITTED SAMPLE
**

CONCLUSION:

<table>
<thead>
<tr>
<th>TESTED SAMPES</th>
<th>STANDARD</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBMITTED SAMPLE</td>
<td>EUROPEAN DIRECTIVE 2011/65/EU</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>ON THE RESTRICTION OF THE USE OF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CERTAIN HAZARDOUS SUBSTANCES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(RoHS Directive)</td>
<td></td>
</tr>
</tbody>
</table>

************FOR FURTHER DETAILS, PLEASE REFER TO THE FOLLOWING PAGE(S)************

Signed for and on behalf of ANBOTEK COMPLIANCE LABORATORY LIMITED

Written by [Signature] Inspected by [Signature]
Approved [Signature] / Manager
Testing method:

<table>
<thead>
<tr>
<th>Testing Item</th>
<th>Measuring method</th>
<th>Instrument</th>
<th>Report Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd)</td>
<td>EN 1122B</td>
<td>ICP-AES</td>
<td>2 mg/kg</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>EPA 3050B</td>
<td>ICP-AES</td>
<td>2 mg/kg</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>EPA 3052</td>
<td>ICP-AES</td>
<td>2 mg/kg</td>
</tr>
<tr>
<td>Chromium(VI) [Cr(VI)]</td>
<td>EPA 3060A</td>
<td>UV-VIS</td>
<td>2 mg/kg</td>
</tr>
<tr>
<td>Polybrominated Biphenyl (PBB)</td>
<td>83/264/EEC</td>
<td>GC/MS</td>
<td>5 mg/kg</td>
</tr>
<tr>
<td>Polybrominated Diphenylether (PBDE)</td>
<td>83/264/EEC</td>
<td>GC/MS</td>
<td>5 mg/kg</td>
</tr>
</tbody>
</table>

Method detection Limits:

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Unit</th>
<th>Acceptable Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>100</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>ppm</td>
<td>1000</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>ppm</td>
<td>1000</td>
</tr>
<tr>
<td>Chromium(VI) [Cr(VI)]</td>
<td>ppm</td>
<td>1000</td>
</tr>
<tr>
<td>Polybrominated Biphenyl (PBB)</td>
<td>ppm</td>
<td>1000</td>
</tr>
<tr>
<td>Polybrominated Diphenylether (PBDE)</td>
<td>ppm</td>
<td>1000</td>
</tr>
</tbody>
</table>

Test flow:

1. **To Determine lead Content:**

 - Weigh the sample into a vessel.
 - Add the digestion solution, close the microwave vessel.
 - The sample is digested in the microwave oven following a specific decomposition program.
 - Cooling the vessel, filter; washed and filled to the mark with distilled water.
 - Tested by ICP-OE.
 - Report.

2. **To Determine Cadmium Content:**

 - Weigh the sample into a flask.
 - Added the acid digestion solution and heated until the decomposed solution turns pale yellow.
 - Cool down, Hydrogen peroxide is added. The sample is heated once again until white fumes are generated.
 - Filter; washed and filled to the mark with distilled water.
 - Tested by ICP-OE.
 - Report.
3. To Determine Mercury Content:

- Weigh the sample into a vessel.
- Add the digestion solution, close the microwave vessel.
- The sample is digested in the microwave oven following a specific decomposition program.
- Cooling the vessel, filter; washed and filled to the mark with distilled water.
- Tested by CV-AAS.
- Report

4. To Determine Hexavalent Chromium Content:

- Weigh the sample; add the digestion solution.
- Stir while heating the samples continuously to 90-95℃.
- Gradually cool each solution to room temperature.
- Filter; washed and filled to the mark with distilled water.
- Add the diphenylcarbazide solution and adjust the pH to acidic.
- Transfer a portion of the solution to absorption cell, measure the absorbance with UV-VIS.
- Report

5. To Determine Hexavalent Chromium Content in metals:

- spot-test:
 - For a metal plate sample, place 1-5 drops of test solution on the sample.
 - If the test result is positive for the sample, the sample is considered to have a hexavalent chromium coating.
 - If the test result is negative, some testing steps are carried out to confirm that the result is negative or positive.
 - When ever the analyst is not certain about the spot-test result obtained, the boiling-water-extraction procedure shall be used to verify the result.

6. To Determine PBBs / PBDEs Content:

- Add 100mg +/- 10mg of the sample into the extraction thimbles.
- Add appropriate surrogate and, matrix spiking standards.
- Add extraction to flask; extract for appropriate hours.
- Collect extract, filled to the mark with solvent.
- Tested by GC-MS.
- Report
Test Results

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3-1</th>
<th>No. 3-2</th>
<th>No. 4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Flame Retardants

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 4-2</th>
<th>No. 5-1</th>
<th>No. 5-2</th>
<th>No. 6-1</th>
<th>No. 6-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polybrominated biphenyls (PBBs)</td>
<td>ppm</td>
<td>5</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Polybrominated Diphenylethers(PBDEs)</td>
<td>ppm</td>
<td>5</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 7-1</th>
<th>No. 7-2</th>
<th>No. 7-3</th>
<th>No. 7-4</th>
<th>No. 7-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Flame Retardants

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 7-1</th>
<th>No. 7-2</th>
<th>No. 7-3</th>
<th>No. 7-4</th>
<th>No. 7-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polybrominated biphenyls (PBBs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Polybrominated Diphenylethers(PBDEs)</td>
<td>ppm</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>
RoHS Test Report

No. 201205833R
Date: Jun. 07, 2012
Page 5 of 10

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 7-6</th>
<th>No. 7-7</th>
<th>No. 7-8</th>
<th>No. 8-1</th>
<th>No. 8-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Flame Retardants

| Polybrominated biphenyis (PBBs) | ppm | 5 | N.D. | N.D. | N.D. | N.D. | N.A. |
| Polybrominated Diphenylethers (PBDEs) | ppm | 5 | N.D. | N.D. | N.D. | N.D. | N.A. |

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 9-1</th>
<th>No. 9-2</th>
<th>No. 9-3</th>
<th>No. 10-1</th>
<th>No. 10-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Flame Retardants

| Polybrominated biphenyis (PBBs) | ppm | 5 | N.D. | N.D. | N.A. | N.D. | N.A. |
| Polybrominated Diphenylethers (PBDEs) | ppm | 5 | N.D. | N.D. | N.A. | N.D. | N.A. |

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>MDL</th>
<th>No. 10-3</th>
<th>No. 11-1</th>
<th>No. 11-2</th>
<th>No. 11-3</th>
<th>No. 11-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>Negative</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Flame Retardants

| Polybrominated biphenyis (PBBs) | ppm | 5 | N.A. | N.A. | N.D. | N.A. | N.D. |
| Polybrominated Diphenylethers (PBDEs) | ppm | 5 | N.A. | N.A. | N.D. | N.A. | N.D. |
Lead Content (Pb)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>12-1</th>
<th>12-2</th>
<th>12-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Cadmium (Cd)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>12-1</th>
<th>12-2</th>
<th>12-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Mercury Content (Hg)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>12-1</th>
<th>12-2</th>
<th>12-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Hexavalent Chromium Content [Cr(VI)]

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>12-1</th>
<th>12-2</th>
<th>12-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Flame Retardants

Polybrominated Biphenyls (PBBs)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>13-1</th>
<th>13-2</th>
<th>14-1</th>
<th>14-2</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Polybrominated Diphenylethers (PBDEs)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>16</th>
<th>17-1</th>
<th>17-2</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Lead Content (Pb)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>16</th>
<th>17-1</th>
<th>17-2</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Cadmium (Cd)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>16</th>
<th>17-1</th>
<th>17-2</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Mercury Content (Hg)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>16</th>
<th>17-1</th>
<th>17-2</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Hexavalent Chromium Content [Cr(VI)]

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>16</th>
<th>17-1</th>
<th>17-2</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>Negative</td>
<td>N.D.</td>
<td>Negative</td>
<td>Negative</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Flame Retardants

Polybrominated Biphenyls (PBBs)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>16</th>
<th>17-1</th>
<th>17-2</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Polybrominated Diphenylethers (PBDEs)

<table>
<thead>
<tr>
<th>MDL No.</th>
<th>16</th>
<th>17-1</th>
<th>17-2</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>N.A.</td>
<td>N.D.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Item</td>
<td>Unit</td>
<td>MDL</td>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Content (Pb)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury Content (Hg)</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexavalent Chromium Content [Cr(VI)]</td>
<td>ppm</td>
<td>2</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame Retardants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybrominated biphenyis (PBBs)</td>
<td>ppm</td>
<td>5</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybrominated Diphenylethers(PBDEs)</td>
<td>ppm</td>
<td>5</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

1. ppm = mg/kg.
2. N.D. = NOT DETECTED (<MDL)
3. N.A. = NOT APPLICABLE
4. Negative = Absence of CrVI coating

DISCLAIM: Anbotek take no responsibility for any mistakes caused by inaccurate and/or invalid information submitted by the applicant.
Sample Appearance Description:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Part Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCB</td>
<td>Green PCB (mixed)</td>
</tr>
<tr>
<td>2</td>
<td>TIN</td>
<td>Silvery metal</td>
</tr>
<tr>
<td>3</td>
<td>IC</td>
<td>---</td>
</tr>
<tr>
<td>3-1</td>
<td>BODY</td>
<td>Black body</td>
</tr>
<tr>
<td>3-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>4</td>
<td>RESISTOR</td>
<td>---</td>
</tr>
<tr>
<td>4-1</td>
<td>BODY</td>
<td>Grey body w/ multicolor printing (mixed)</td>
</tr>
<tr>
<td>4-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>5</td>
<td>CHIP RESISTOR</td>
<td>---</td>
</tr>
<tr>
<td>5-1</td>
<td>BODY</td>
<td>Black body w/ white printing</td>
</tr>
<tr>
<td>5-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>6</td>
<td>CHIP CAPACITOR</td>
<td>---</td>
</tr>
<tr>
<td>6-1</td>
<td>BODY</td>
<td>Yellow body</td>
</tr>
<tr>
<td>6-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>7</td>
<td>ELECTROLYTICAL CAPACITOR</td>
<td></td>
</tr>
<tr>
<td>7-1</td>
<td>FOIL</td>
<td>Black metal</td>
</tr>
<tr>
<td>7-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>7-3</td>
<td>ALUMINIUM</td>
<td>Silvery metal shell</td>
</tr>
<tr>
<td>7-4</td>
<td>LIQUID</td>
<td>Flaxen liquid</td>
</tr>
<tr>
<td>7-5</td>
<td>PAPER</td>
<td>Black paper</td>
</tr>
<tr>
<td>7-6</td>
<td>RUBBER</td>
<td>Black rubber</td>
</tr>
<tr>
<td>7-7</td>
<td>HEAT SHRINKABLE TUBINGS</td>
<td>Black plastic tube</td>
</tr>
<tr>
<td>7-8</td>
<td>SHELL</td>
<td>Black plastic</td>
</tr>
<tr>
<td>8</td>
<td>DIODE</td>
<td>---</td>
</tr>
<tr>
<td>8-1</td>
<td>BODY</td>
<td>Black solid w/ grey printing (mixed)</td>
</tr>
<tr>
<td>8-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>9</td>
<td>INDUCTOR</td>
<td>---</td>
</tr>
<tr>
<td>9-1</td>
<td>COVER</td>
<td>Black rubber cover</td>
</tr>
<tr>
<td>9-2</td>
<td>CORE</td>
<td>Dk-grey core</td>
</tr>
<tr>
<td>9-3</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>10</td>
<td>TERMINAL</td>
<td>---</td>
</tr>
<tr>
<td>10-1</td>
<td>BODY</td>
<td>Green plastic body</td>
</tr>
<tr>
<td>10-2</td>
<td>WIRE</td>
<td>Silvery metal wire</td>
</tr>
<tr>
<td>Item No.</td>
<td>Part Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>10-3</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>11</td>
<td>TRANSFORMER</td>
<td>---</td>
</tr>
<tr>
<td>11-1</td>
<td>METAL WIRE</td>
<td>Silvery color metal</td>
</tr>
<tr>
<td>11-2</td>
<td>CORE</td>
<td>Black core</td>
</tr>
<tr>
<td>11-3</td>
<td>TIN BAR</td>
<td>Silvery metal</td>
</tr>
<tr>
<td>11-4</td>
<td>INSULATION PAINT</td>
<td>Transparent liquid</td>
</tr>
<tr>
<td>11-5</td>
<td>INSULATION WIRE</td>
<td>Yellow plastic jacket & golden colored metal wire</td>
</tr>
<tr>
<td>11-6</td>
<td>SKELETON</td>
<td>Black skeleton</td>
</tr>
<tr>
<td>12</td>
<td>RELAY</td>
<td>---</td>
</tr>
<tr>
<td>12-1</td>
<td>BODY</td>
<td>Black body</td>
</tr>
<tr>
<td>12-2</td>
<td>METAL</td>
<td>Silvery metal</td>
</tr>
<tr>
<td>12-3</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>13</td>
<td>CRYSTAL</td>
<td>---</td>
</tr>
<tr>
<td>13-1</td>
<td>BODY</td>
<td>Silvery metal body</td>
</tr>
<tr>
<td>13-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>14</td>
<td>CAPACITOR</td>
<td>---</td>
</tr>
<tr>
<td>14-1</td>
<td>BODY</td>
<td>Blue body w/ black printing</td>
</tr>
<tr>
<td>14-2</td>
<td>PIN</td>
<td>Silvery metal pin</td>
</tr>
<tr>
<td>15</td>
<td>NEEDLE</td>
<td>Silvery bend metal</td>
</tr>
<tr>
<td>16</td>
<td>COPPER MAST</td>
<td>Copper-color metal</td>
</tr>
<tr>
<td>17</td>
<td>SWITCH</td>
<td>---</td>
</tr>
<tr>
<td>17-1</td>
<td>BODY</td>
<td>Black body</td>
</tr>
<tr>
<td>17-2</td>
<td>PIN</td>
<td>Silvery metal</td>
</tr>
<tr>
<td>18</td>
<td>SCREW</td>
<td>Silvery metal</td>
</tr>
<tr>
<td>19</td>
<td>CRUST</td>
<td>Brown plastic</td>
</tr>
<tr>
<td>20</td>
<td>LABEL</td>
<td>White label</td>
</tr>
</tbody>
</table>

***** End of Report *****
APPENDIX A

Photograph of Sample